249 research outputs found

    Commentary: Selecting synaptic partners: GRASPing the role of UNC- 6/netrin

    Get PDF
    Forming synaptic connections of the appropriate strength between specific neurons is crucial for constructing neural circuits to control behavior. A recent paper in Neural Development describes the use of a synapse-specific label in Caenorhabditis elegans to implicate local UNC-6/netrin signaling in this developmental process. Thus, as well as their well known roles in cell migration and axon guidance, UNC-6/netrin signals distinguish an appropriate synaptic partner from other potential targets

    In the best interests of the deceased: A possible justification for organ removal without consent?

    Get PDF
    Opt-out systems of postmortem organ procurement are often supposed to be justifiable by presumed consent, but this justification turns out to depend on a mistaken mental state conception of consent. A promising alternative justification appeals to the analogical situation that occurs when an emergency decision has to be made about medical treatment for a patient who is unable to give or withhold his consent. In such cases, the decision should be made in the best interests of the patient. The analogous suggestion to be considered, then, is, if the potential donor has not registered either his willingness or his refusal to donate, the probabilities that he would or would not have preferred the removal of his organs need to be weighed. And in some actual cases the probability of the first alternative may be greater. This article considers whether the analogy to which this argument appeals is cogent, and concludes that there are important differences between the emergency and the organ removal cases, both as regards the nature of the interests involved and the nature of the right not to be treated without one’s consent. Rather, if opt-out systems are to be justified, the needs of patients with organ failure and/or the possibility of tacit consent should be considered

    A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans

    Get PDF
    Engineering fluorescent proteins into large genomic clones, contained within BACs or fosmid vectors, is a tool to visualize and study spatiotemporal gene expression patterns in transgenic animals. Because these reporters cover large genomic regions, they most likely capture all cis-regulatory information and can therefore be expected to recapitulate all aspects of endogenous gene expression. Inserting tags at the target gene locus contained within genomic clones by homologous recombination (“recombineering”) represents the most straightforward method to generate these reporters. In this methodology paper, we describe a simple and robust pipeline for recombineering of fosmids, which we apply to generate reporter constructs in the nematode C. elegans, whose genome is almost entirely covered in an available fosmid library. We have generated a toolkit that allows for insertion of fluorescent proteins (GFP, YFP, CFP, VENUS, mCherry) and affinity tags at specific target sites within fosmid clones in a virtually seamless manner. Our new pipeline is less complex and, in our hands, works more robustly than previously described recombineering strategies to generate reporter fusions for C. elegans expression studies. Furthermore, our toolkit provides a novel recombineering cassette which inserts a SL2-spliced intercistronic region between the gene of interest and the fluorescent protein, thus creating a reporter controlled by all 5′ and 3′ cis-acting regulatory elements of the examined gene without the direct translational fusion between the two. With this configuration, the onset of expression and tissue specificity of secreted, sub-cellular compartmentalized or short-lived gene products can be easily detected. We describe other applications of fosmid recombineering as well. The simplicity, speed and robustness of the recombineering pipeline described here should prompt the routine use of this strategy for expression studies in C. elegans

    Imaging Trans-Cellular Neurexin-Neuroligin Interactions by Enzymatic Probe Ligation

    Get PDF
    Neurexin and neuroligin are transmembrane adhesion proteins that play an important role in organizing the neuronal synaptic cleft. Our lab previously reported a method for imaging the trans-synaptic binding of neurexin and neuroligin called BLINC (Biotin Labeling of INtercellular Contacts). In BLINC, biotin ligase (BirA) is fused to one protein while its 15-amino acid acceptor peptide substrate (AP) is fused to the binding partner. When the two fusion proteins interact across cellular junctions, BirA catalyzes the site-specific biotinylation of AP, which can be read out by staining with streptavidin-fluorophore conjugates. Here, we report that BLINC in neurons cannot be reproduced using the reporter constructs and labeling protocol previously described. We uncover the technical reasons for the lack of reproducibilty and then re-design the BLINC reporters and labeling protocol to achieve neurexin-neuroligin BLINC imaging in neuron cultures. In addition, we introduce a new method, based on lipoic acid ligase instead of biotin ligase, to image trans-cellular neurexin-neuroligin interactions in human embryonic kidney cells and in neuron cultures. This method, called ID-PRIME for Interaction-Dependent PRobe Incorporation Mediated by Enzymes, is more robust than BLINC due to higher surface expression of lipoic acid ligase fusion constructs, gives stronger and more localized labeling, and is more versatile than BLINC in terms of signal readout. ID-PRIME expands the toolkit of methods available to study trans-cellular protein-protein interactions in living systems.National Institutes of Health (U.S.) (DP1 OD003961

    Parent-Of-Origin Effects in Autism Identified through Genome-Wide Linkage Analysis of 16,000 SNPs

    Get PDF
    Autism is a common heritable neurodevelopmental disorder with complex etiology. Several genome-wide linkage and association scans have been carried out to identify regions harboring genes related to autism or autism spectrum disorders, with mixed results. Given the overlap in autism features with genetic abnormalities known to be associated with imprinting, one possible reason for lack of consistency would be the influence of parent-of-origin effects that may mask the ability to detect linkage and association.We have performed a genome-wide linkage scan that accounts for potential parent-of-origin effects using 16,311 SNPs among families from the Autism Genetic Resource Exchange (AGRE) and the National Institute of Mental Health (NIMH) autism repository. We report parametric (GH, Genehunter) and allele-sharing linkage (Aspex) results using a broad spectrum disorder case definition. Paternal-origin genome-wide statistically significant linkage was observed on chromosomes 4 (LOD(GH) = 3.79, empirical p<0.005 and LOD(Aspex) = 2.96, p = 0.008), 15 (LOD(GH) = 3.09, empirical p<0.005 and LOD(Aspex) = 3.62, empirical p = 0.003) and 20 (LOD(GH) = 3.36, empirical p<0.005 and LOD(Aspex) = 3.38, empirical p = 0.006).These regions may harbor imprinted sites associated with the development of autism and offer fruitful domains for molecular investigation into the role of epigenetic mechanisms in autism

    Preparation and Characterization of the Extracellular Domain of Human Sid-1

    Get PDF
    In C. elegans, the cell surface protein Sid-1 imports extracellular dsRNA into the cytosol of most non-neuronal cells, enabling systemic spread of RNA interference (RNAi) throughout the worm. Sid-1 homologs are found in many other animals, although for most a function for the protein has not yet been established. Sid-1 proteins are composed of an N-terminal extracellular domain (ECD) followed by 9–12 predicted transmembrane regions. We developed a baculovirus system to express and purify the ECD of the human Sid-1 protein SidT1. Recombinant SidT1 ECD is glycosylated and spontaneously assembles into a stable and discrete tetrameric structure. Electron microscopy (EM) and small angle x-ray scattering (SAXS) studies reveal that the SidT1 ECD tetramer is a compact, puck-shaped globular particle, which we hypothesize may control access of dsRNA to the transmembrane pore. These characterizations provide inroads towards understanding the mechanism of this unique RNA transport system from structural prospective

    A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems

    Get PDF
    Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level

    Functional Phenotypic Rescue of Caenorhabditis elegans Neuroligin-Deficient Mutants by the Human and Rat NLGN1 Genes

    Get PDF
    Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders

    The evolution of acoustic size exaggeration in terrestrial mammals

    Get PDF
    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production

    Monotone and near-monotone biochemical networks

    Get PDF
    Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion
    corecore